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A Data-Mining Model for Protection
of FACTS-Based Transmission Line

S. R. Samantaray, Senior Member, IEEE

Abstract—This paper presents a data-mining model for
fault-zone identification of a flexible ac transmission systems
(FACTS)-based transmission line including a thyristor-controlled
series compensator (TCSC) and unified power-flow controller
(UPFC), using ensemble decision trees. Given the randomness in
the ensemble of decision trees stacked inside the random forests
model, it provides effective decision on fault-zone identification.
Half-cycle postfault current and voltage samples from the fault
inception are used as an input vector against target output “1”
for the fault after TCSC/UPFC and “ 1” for the fault before
TCSC/UPFC for fault-zone identification. The algorithm is tested
on simulated fault data with wide variations in operating param-
eters of the power system network, including noisy environment
providing a reliability measure of 99% with faster response time
(3/4th cycle from fault inception). The results of the presented
approach using the RF model indicate reliable identification of the
fault zone in FACTS-based transmission lines.

Index Terms—Distance relaying, fault-zone identifica-
tion, random forests (RFs), support vector machine (SVM),
thyristor-controlled series compensator (TCSC), unified
power-flow controller (UPFC).

I. INTRODUCTION

I NCREASED demand of bulk power transfer in the modern
power network has led to an increased focus on trans-

mission constraints and alleviation. Flexible ac transmission
systems (FACTS) [1] devices offer a versatile alternative
to conventional reinforcement methods. Among them, the
thyristor-controlled series compensator (TCSC) [2] and unified
power-flow controller (UPFC) [3] are important FACTS de-
vices, which are used extensively for improving the utilization
of the existing transmission system. The presence of TCSC
in fault loop not only affects the steady-state components but
also the transient components. The controllable reactance, the
metal–oxide varistors (MOVs) protecting the capacitors, and
the air-gap operation make the protection decision more com-
plex and, therefore, the conventional relaying scheme based
on fixed settings finds limitations. On the other hand, UPFC
offers new horizons in terms of power system control. While
the use of UPFC improves the power transfer capability and
stability of a power system, certain other problems emerge in
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transmission-line protection [4]–[6], greatly affecting the reach
of the distance relay.
In the FACTS-based transmission line, if the fault does not in-

clude FACTS device, then the impedance calculation is like an
ordinary transmission line, and when the fault includes FACTS,
then the impedance calculation accounts for the impedances in-
troduced by FACTS device. The line impedance is compared
with the protective zone and if the line impedance is less than
the relay setting, then the relay issues a signal to trip the cir-
cuit breaker (CB). Further, for similar types of faults, the cur-
rent level may be of the same order at two different points of the
transmission line, (before and after TCSC/UPFC). Thus, before
the apparent impedance to the fault point is computed, a more
reliable and accurate fault-zone identification technique is nec-
essary for safe and reliable operation of the distance relay. The
correct fault-zone identification in presence of the FACTS de-
vices, such as TCSC and UPFC in the transmission line, is one
of the critical tasks to be dealt with.
Recent techniques based on neural networks [7], [8], find

limitations, since they require a large number of neurons to
model the structure of the network involving large training sets
and training time. Recently, a hybrid technique using a wavelet
transform combined with support vector machine (SVM) [9],
[10] has been proposed for fault-zone identification in the
TCSC line. The aforementioned work finds limitations since
the wavelet transform is highly prone to noise and provides
erroneous results even with a signal-to-noise ratio (SNR) of 30
dB [12]. Also, the computational time of SVM is higher com-
pared to the proposed ensemble DTs-based data-mining model,
which puts constraints on the online realization of SVM-based
relays for distance relaying applications, where speed and
accuracy are prime considerations. Thus, there is a strong moti-
vation to build up an accurate and faster data-mining model for
fault-zone identification in FACTS-based transmission lines.
The proposed research is based on a data-mining model

known as ensemble decision trees [13]–[18], also known as
random forests (RFs), for fault-zone assessment in a FACTS
(TCSC/UPFC)-based transmission line. Half-cycle postfault
current and voltage samples (time-domain data samples) are
used as inputs to the RF against target outputs “ 1” for faults
before TCSC/UPFC and “1” for faults after TCSC/UPFC. The
RF is trained to build a data-mining model with an extensive
data set derived from a series of fault simulations. The proposed
technique is tested on wide variations in operating parameters
in the power system network, including a noisy environment
and, was found to be accurate and robust for fault-zone identifi-
cation in TCSC/UPFC-based transmission lines. The following
sections deal with RFs, systems studied, results, analysis,
discussion, and conclusions.
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II. RANDOM FORESTS

RFs are a large combination of de-correlated tree predictors
such that each tree depends on the values of a random vector
sampled independently. Individual trees are noisy and unstable,
but since when grown sufficiently deep, they have relatively
low bias. Therefore, they are ideal candidates for ensemble
growing since they can capture complex interactions, while
fully benefitting from aggregation-based variance reduction.
Using a random selection of features to split each node and
resampling (with replacement) the training set to grow each tree
yields error rates that are de-correlated and more robust with
respect to noise. The generalization error of forests converges
to a limit since the number of trees in the forest increases.
The basic idea of most ensemble tree growing procedures is

that for the th tree ( , the number of trees in the en-
semble) a random vector is generated, independent of the
past random vectors , but with the same distribu-
tion, and a single tree is grown using the training set S and the
set of attributes in , resulting in a classifier where
is an input vector. In random split selection, consists of a

number of independent random integers where
is the number of attributes in.
An RF consists of a collection of tree-structured classifiers

, where are independent
identically distributed random vectors and each tree casts a unit
vote for the most popular class at input . An algorithmic view
of the RF growing process is summarized as follows [13]:

1) For to :
a) Draw a boostrap sample of size from the
training data S

b) Grow a random forest tree to the
boostrapped data, by recursively repeating the steps
below for each terminal noted of the tree, until the
no other split is possible (unpurned tree of maximal
depth):
i) Select variables from the features
ii) Pick the best variable/split-point among the

iii) Split the node into two daughter nodes
2) Output the ensemble of trees

.

A traditional decision tree essentially represents an explicit
decision boundary, and an instance E is classified into class c
if E falls into the decision area (a leaf in the decision tree) cor-
responding to c [16]. The class probability p(c E) is typically
estimated by the fraction of instances of class c in the leaf into
which E falls. This probability estimate is very crude when the
tree is pruned because all of the instances falling into the same
leaf have the same class probability. More accurate probability
estimates require unpruned trees [19], which are the backbone
of the RFs. Stated otherwise, the RF predictor has the additional
advantage of providing a stability or instability level of the event
through probability-based ranking. Assuming that the proba-
bility estimates from individual trees are random variables, each

Fig. 1. Transmission line with TCSC.

Fig. 2. Transmission line with UPFC.

with variance , the average variance is , which con-
firms that the RF leads seamlessly to improved probability esti-
mates [13].
Although the RF is a relatively young data-mining tool,

people [20]–[22] have started recognizing its strengths: 1) it is
simple and easy to use; 2) very high accuracy; 3) its relatively
robust to outliers and noise; 4) it gives useful internal estimates
of error, strength, and correlation; 5) not overfitting if selecting
a large number of trees; and 6) insensitive to the choice of split.

III. SYSTEM STUDIED

A. TCSC- and UPFC-Based Line

A 400-kV, 50-Hz power system is illustrated in Fig. 1. The
power system consists of two sources: TCSC [10] and associ-
ated components, and a 300-km transmission line. The trans-
mission line has zero-sequence impedance

and positive-sequence impedance
. 400 kV and .

The TCSC is designed such that it provides 30% compen-
sation at 180 (minimum) and 40% compensation at 150
(maximum) firing angle, and in this study, the firing angle is
varied within this range. The TCSC is placed at 30%, 50% and
80% of the transmission line to assess the impact of TCSC
placement on the performance of the developed data-mining
model. Similarly, UPFC [11] is placed at 30%, 50%, and 80%
of the line (Fig. 2) with variations in series injected voltage
and phase angle. The simulation includes all ten types of
shunt faults (L-G: Line-Ground, LL-G: Line-Line-Ground,
LL: Line-Line, and LLL: Line-Line-Line) with different fault
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TABLE I
SUMMARY COUNT OF THE COMPLETE DATABASE GENERATED

resistance, source impedance, inception angles, fault locations
and firing angles. The systems studied are simulated using
PSCAD (EMTDC) subroutines with a sampling rate of 1.0 kHz
at 50-Hz base frequency.

B. Summary Count of the Data Sets Generated

Initially, the fault current and voltage signal samples are col-
lected at the relaying point. Half cycles postfault current and
voltage samples after fault inception are fed to the RFs as an
input vector against the target output of “1” for the fault after
TCSC/UPFC and “ 1” for the fault before TCSC/UPFC. Thus,
there are six sets of inputs against one output. The inputs are
half cycle signal samples of three phase currents and three phase
voltages after fault inception. Based on the sampling frequency
of 1.0 kHz, half cycle contains 10 samples and thus the input
vector (one case) contains 60 data points for currents

for voltage signals against one target output.
The data sets are generated under various operating condi-

tions of the power system network as follows.
• variations in fault resistance from 0 to 200
• variations in source impedance (Zs) by 30% from normal
value;

• variations in fault location: 25%, 45%, 55%, and 85% of
the line;

• variations in fault inception angle (FIA): 30 , 45 , 60 ;
• different types of fault: a-g (a-phase to ground), b-g
(b-phase to ground), c-g(c-phase to ground), ab-g
(a-b-phase to ground), bc-g (b-c-phase to ground),
ca-g (c-a-phase to ground), a-b (a-phase to b-phase),
b-c (b-phase to c-phase), c-a (c-phase to a-phase), a-b-c
(a-phase to b-phase to c-phase);

• reverse power flow;
• sudden load change;
• TCSC firing angle changed from 180 (minimum com-
pensation) to 150 (maximum compensation);

• UPFC series injected voltage (Vse) varied at 5%, 10%, and
15% of the normal voltage;

• UPFC voltage phase angle varied from 0 –360 ;
• FACTS device (TCSC/UPFC) at different locations (30%,
50%, 80%) in the transmission line.

Total simulations carried for TCSC line are
Types of fault Reverse power flow

load change firing angles locations
. The total fault simulations carried out for

UPFC line are
Types of fault Reverse power flow

load change phase angles locations
. The summary count of the detailed data sets is given

in Table I. The proposed RF-based protection scheme for
fault-zone identification is shown in Fig. 3.

Fig. 3. Proposed RF-based fault-zone identification scheme.

TABLE II
COMPARISON OF THE CONFUSION MATRIX BETWEEN RF AND SVM FOR THE

TCSC AND UPFC LINE FOR FAULT-ZONE IDENTIFICATION

IV. RESULTS

In the proposed study, an extensive data set is generated to
train and test the RF-based data-mining model for developing
an accurate and robust classifier for fault-zone identification
in FACTS-based transmission line. The total data sets gener-
ated for TCSC and UPFC lines are 38400 and 43200, respec-
tively. The proposed approach uses 26880 (70% for TCSC) and
30240 (70% for UPFC) cases for training, and the rest 30%
for testing in each case, which is the most generalized training-
testing ratio for data-mining algorithms. The RF is trained for
100 generations of trees to build the accurate model for fault-
zone identification.
The results obtained using RF has been compared with SVM

for similar applications [9], [10]. The same time-domain data set
is used to train and test the SVM, without preprocessing through
the wavelet transform. In this study, the Gaussian kernel is used
for the SVM implementation and the values of SVM parame-
ters, such as width of Gaussian function, bound on Lagrangian
multipliers, and the conditioning parameter are the same (after
cross validation) as considered in [10]. Table II depicts the con-
fusion matrix generated using RF and SVM for fault-zone iden-
tification. “ 1” corresponds to the fault before TCSC/UPFC
and “1” for faults after TCSC/UPFC (placed at 50% of the line).
The confusion matrix provides the results of the predicted class
versus the actual class for the test data sets (30%). The ac-
curacy for TCSC line with RF is 99.50% compared to 93.99
using SVM. Similar observations are made for UPFC, where
the fault-zone identification accuracies are 99.19% and 92.89,
with RF and SVM, respectively.
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TABLE III
FAULT-ZONE IDENTIFICATION FOR DIFFERENT FAULT SITUATIONS FOR THE

TCSC AND UPFC LINE USING RF

TABLE IV
CLASSIFICATION ACCURACIES AT DIFFERENT FIRING ANGLES-

(COMPENSATION LEVELS) FOR TCSC LINE USING RF

TABLE V
CLASSIFICATION ACCURACIES AT DIFFERENT SERIES-INJECTED VOLTAGE (Vse)

FOR THE UPFC LINE USING RF

Table III provides the complete statistics of fault-zone identi-
fication for different types of faults, such as line-ground (L-G),
line-line-ground (LL-G), line-line (LL), and line-line-line
(LLL) faults. The fault-zone identification accuracies are above
99% for each category of fault situations. The misclassification
cases are only 58 and 104 for TCSC and UPFC (placed at 50%
of the line), respectively.
Table IV depicts the classification accuracies of RF for the

TCSC line (placed at 50% of the line) at different firing angles
which in turn decide the compensation level. In the proposed
study, firing angle corresponds to 40% (maximum)
and corresponds to 30% (minimum) compensation. It
is observed that at different compensation levels, the fault-zone
identification accuracies of RF are more than 99%.
Table V depicts the classification accuracies at different se-

ries-injected voltage (Vse) in the case of UPFC line (UPFC
placed at 50% of the line). It is found that the fault-zone iden-
tification accuracies are above 99% at different series-injected
voltages of 5%, 10%, and 15%. Similar observation are made
for the UPFC line with a different series-injected voltage phase
angle , and the results are highly promising (Table VI).
The performance comparisons between RF and SVM are de-

picted in Table VII. The classification accuracies are above 99%

TABLE VI
CLASSIFICATION ACCURACIES AT DIFFERENT SERIES-INJECTED VOLTAGE

PHASE ANGLE FOR THE UPFC LINE USING RF

TABLE VII
COMPARISON BETWEEN RF AND SVM FOR DIFFERENT FAULT SITUATIONS

TABLE VIII
COMPARISON BETWEEN RF AND SVM FOR DIFFERENT FAULT SITUATIONS

WITH AN SNR OF 20 dB (TCSC AND UPFC AT 50% OF THE LINE)

in the case of RF compared to 93% (around) that of SVM. Also,
the performance of RF and SVM is assessed for the data sets
with noise of a signal-to-noise ratio (SNR) of 20 dB (white
Gaussian noise) as depicted in Table VIII. It is observed that
the overall performance accuracy of SVM is highly degraded in
the noisy environment touching 92.89%.
Table IX depicts the performance comparisons between RF

and SVM for combined data sets (TCSC+UPFC). In this com-
parison, the data sets considered are 81600 (38400 43200),
and 70% data are used for training and the remainder are 30%
for testing. It is observed that the overall accuracy and relia-
bility of RF are above 99% compared to 93% for that of SVM.
Thus, the RF provides substantially improved results compared
to SVM, leading to a more generalized classifier for fault-zone
identification in FACTS-based transmission lines.
To test the impact of location of FACTS devices in the trans-

mission lines on the performance of the RF-based predictor for
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TABLE IX
COMPARISON BETWEEN RF AND SVM FOR COMBINED DATA SETS
TCSC+UPFC (TCSC AND UPFC PLACED AT 50% OF THE LINE)

TABLE X
PERFORMANCE OF THE RF AT DIFFERENT LOCATIONS

OF THE FACTS DEVICE IN TRANSMISSION LINES

fault-zone identification, the same has been tested for fault sit-
uations with FACTS devices (UPFC/TCSC) placed at different
locations of the transmission line (30%, 50%, and 80%). Table X
depicts the performance accuracy of RF for fault-zone identifi-
cation at different locations of the TCSC/UPFC in the transmis-
sion line. It is observed that RF is able to identify the fault zone
with accuracy more than 99%, taking all three situations into
consideration.
The convergence characteristic of RF is represented by the

out-of-bag prediction (OOB) error [13] and the advantage of
OOB error is that more realistic estimate of the error rate can
be obtained. If we feed the random forest with only 70% of the
original data and keep the rest for testing, giving that each tree
is trained on two third of the data only, it turns out that only
50% of the data are actually seen by a given random forest tree
at learning stage. The RF is trained for 100 generations of trees
and the convergence characteristic is shown in Fig. 4. There are
three characteristic curves in Fig. 4, showing the red line for
“ 1” (faults before FACTS), green for “1” (faults after FACTS)
and black for “OOB” error during training. It is observed that
after 50 tree generations, the error becomes minimum and al-
most constant. However, 100 tree generations are considered for
more reliable and accurate decision making.

V. ANALYSIS AND DISCUSSION

While comparing the performance with SVM [9], [10], it is
observed that the classification accuracies are above 99% in case
of RF compared to 93% of SVM, considering both TCSC and
UPFC, together. In earlier studies, the performance accuracies

Fig. 4. Convergence characteristic of the RF during training for the TCSC line
placed at 50% of the line.

TABLE XI
RELIABILITY MEASURE DERIVED FROM RF AND SVM

have not been assessed in noisy environment, which is one of
the critical issues in power system applications. The classifi-
cation results in noisy environment (SNR 20 dB) are given in
Table VIII and it is observed that the fault-zone identification
accuracy of RF is above 99%, where as the overall performance
of SVM is degraded to 90% (average), which shows the noise
immunity of RF over SVM.
Reliability is one of the important measures of the classifica-

tion results for fault-zone identification. In this analysis, relia-
bility is defined as follows:
• Reliability for faults after FACTS: Number of cases pre-
dicted for faults after FACTS (“1”)/(total number of actual
cases for faults after FACTS);

• Reliability for faults before FACTS: Number of cases
predicted for faults before FACTS (“ 1”)/(total number
of actual cases for faults before FACTS).

In the aforementioned reliability analysis, total numbers of
actual cases is equal to the numbers of cases predicted + num-
bers of cases mis-detetected for faults before or after FACTS.
The complete statistics of the reliability is depicted in Table X.
In this study, “1” corresponds to faults after TCSC/UPFC and
“ 1” corresponds to faults before TCSC/UPFC. The bold fig-
ures in Table XI depict the reliability in percentage and the
figures in brackets show the numbers of misdetection to other
classes. It is observed that 28 cases have been misdetected from
class 1 to 1, thus the resulting reliability of 99.51% in case of
RF for faults after TCSC. Similar situation with SVM provides
483 cases misdetection, providing a reliability of 91.83%. For
faults before TCSC, the reliability becomes 99.47% with RF
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TABLE XII
COMPARISON OF COMPUTATIONAL TIME BETWEEN

RF AND SVM FOR TRAINING DATA SETS

TABLE XIII
COMPARISON OF PROCESSING TIME AND RESPONSE TIME

BETWEEN RF AND SVM FOR EACH FAULT CASE

compared to 96.27% for that of SVM. Similar reliability mea-
sures are observed for faults before and after UPFC in the trans-
mission line.
It is observed from the aforementioned analysis that the

reliability of fault-zone identification is much higher in RF case
(more than 99%) compared to SVM. The reliability directly
shows the misdetection from the desired class to another class.
It is also found out from the analysis, that the reliability is
highly uneven in case of SVM (91.83%, 96.27% for TCSC and
94.53%, 91.33% for UPFC). This shows that the misdetection
rates for faults before and after TCSC/UPFC are not even with
SVM. However, RF provides the reliability measure in all
cases by more than 99%, and the misdetection cases are evenly
distributed over each class. This shows the capability of RF
to detect the fault zone with even and minimal misdetection
rates for faults before and after TCSC/UPFC. Further, the
testing results on combined data sets (TCSC+UPFC) are highly
promising and, thus, result in a more generalized fault-zone
identifier for the TCSC/UPFC-based transmission line using
RF.
The computational time is measured in terms of processing

time on a Core2-duo, 4-GB RAM desktop during training. The
computational time of SVM is 25.3 s compared to 12.1 s of
RF for the TCSC line during training. Similarly, the processing
times are 28.9 and 12.5 s for SVM and RF, respectively, for the
UPFC line. The computational time is very important since the
data-mining model will be retrained time to time to include new
contingencies if at all. A similar observation is made for mixed
data sets as given in Table XII. For a particular case of faulty
situation (each pattern on the test case), the response time of RF
from fault inception is 15 ms (10 5 ms) and that of SVM is 24
ms (10 14ms) for fault-zone identification. The response time
includes half-cycle (10 ms) data samples from fault inception,
used as inputs to RF or SVM and the processing time of RF
or SVM for each test case, as depicted in Table XIII. From the
aforementioned observation, it is found that the computational
time as well as the response time of RF is lower compared to
SVM for the fault-zone identification task.

VI. CONCLUSIONS

The proposed technique provides a data-mining model, such
as ensemble decision trees (RFs), for fault-zone identification
in a FACTS-based transmission line with an accuracy and reli-
ability of more than 99%. RF, the data-mining algorithm, was
found to be faster (3/4 cycles) and accurate compared to the ex-
isting machine-learning technique, such as SVM for fault-zone
identification. The results indicate that the ensemble trees is
highly effective and reliable in identifying the fault zone in the
FACTS-based transmission line which triggers the next cas-
caded algorithms, such as an apparent impedance calculation
for issuing the tripping signal in distance relaying.
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